2. Описание на принципа
При конвенционалната DC електролиза на водата, водородът е генриран като резултат от трансфер на електрони от катода към абсорбираните водородни йони върху електродната поввърхност. Този вид електролиза протича когато приложеното напрежение между анода и катода надвишава нивото на водното декомпозиционното напрежение от около 1.6 V, което е сума от теоритичното декомпозиционно напрежение от 1.23 V при стайна температура и допълнителното напрежение от около 0.4 V в зависимост от материала на електродите и други фактори [1]. DC електролизата e дифузно ограничен процес и потокът (токът) във водата се определя от коефициента на дифузия на йоните. Ето защо е трудно да се увеличи входното напрежение за електрохимична клетка с постоянен обем, без да се намали ефективността на електролизата.
Ние използвахме ултра-късо пулсиращо захранващо напрежение, базирано на статичен индукционен тиристор (СИТ), изобретен от Nishigawa et el. [2,3] и разработен от Shimizu et al [4,5], и индуктивно енергиина кондезираща верига (ИЕКВ) изобретена и разработена от Iida et al.[8]. СИТ е статично индуктивно устройство със специални елементи за генериране на пулиращо високо напрежение и ИЕКВ е верига базирана на индуктивна кондензация вместо конвенционалната Кондензаторна за да се използва заедно със СИТ. Ние използвахме СИТ разработен в нашата лаборатория за целите на водната електролиза и открихме, че водна електролиза при използването на този елеметн, протича чрез различен механизъм, в сравнение с конвенционалната DC електролиза. Когато ултра-късите пулсации с дължина по-малка от няколко микросекунди е приложена във водна електролитна баня, пулсациите са толко бъзи, че не се позволява образуването на стабилен нито двоен слой, нито дифузен слой, в близост до електродите.
Дължината на пулса е необходима за електролиза без формиране на дифузионния слой е определена [9] според формулата
Δt < (1/4D).( X
ad/X)
2Тук Δt е дължината на пулса (s), D е дифузният коефициент (cm
2 s
-1), X
ad е плътноста на водородните йони на катода (cm
-2) и Х (cm
-3) е концентрацията на водородни йони в разтворът. Това уравнение е получено при допускане че общото количество на абсорбирани йони, X
ad, е равно на дебелината на дифузния слой d(cm), умножено по Х, и тук д трабва да е по-голямо от дифузната дължина (4D Δt)
1/2, в периода на пулсация, имайки впредвид, че дължината на пулса трябва да е по-къса от времето за което ще се запълни дифузният слой със водородни йони. От тази формула, вземайки D=2.3х10
-5 cm
2 s
-1 за дифузният коефициент на протона[1], X=6x10
20 cm
-3 за 1М разствор на КОН и X
ad= 10
15 cm
-2 за платинена метална повърхност, дължината на пусла е намерена да е около 3μs. Това означава, че елетролизата протича без образуването на дифузен слой настоящият експеримент, понеже дължината на пулса е една десета от критичните 3μs. Също така се знае, че времето необходимо за образуване на стабилен елетричен двоен слой е от порядъка на наколко десети милисекунди [1]. Ето защо е видно, че не е възможно образуването на стабилен електрически двоен слой при приложеното ултра-късо пулсиращо захранване. Докато елетрично поле с големина 2.6-47 Vcm
-1 може да се използва в настоящият експеримент, липсата на процеса на образуване на стабилен елктричен двоен слой, означава че водородните йони могат да бъдат движени по-бъзо в сравнение с конвеционалната DC електролиза. Тези различни механизми които възникват чрез ултра-къси пулсации, водещи до липса на дифузен слой и стабиелн елетричен двоен слой, могат да спомогнат за получаването на високоефективна водна елекролиза.
Следва "3.Експеримент" заедно със схемата и диаграмите.
За справка -
http://en.wikipedia.org/wiki/Thyristor - ако някой който е по- запознат с електроника, може да обясни точно какъв е този елемтн и как работи.