Тези дни ми се наложи да сметна якост на усукване на вал и установих, че има прекалено сложни формули за целта. Натъкнах се на множество понятия като относителен ъгъл на усукване, полярен инерционен момент на сечението, коравина на пръта при усукване, полярен съпротивителен момент и т. н. Отделих един ден на разни учебници и накрая реших и аз да се пробвам сам да пресметна якостта на усукване на вал. Оказа се проста работа. Постарах се да използвам вече всеизвестни буквени означения за по-лесно разбиране.
Започвам с няколко встъпителни думи що е то еластична деформация. Вземам направо за пример една пружина. При разтягане тя се удължава и ако при отпускане пружината възвръща първоначалното си състояние, значи е еластична. Сега нещо интересно. Няма значение колко е дълга пружината, при едно и също натоварване разстоянието между две съседни нейни навивки е едно и също. С други думи, с каквато сила дърпаме пружината, със същата сила се дърпат едни други навивките на пружината. Друго интересно е, че един и същи товар разтегля дългите пружини повече от късите.
В приложения файл съм начертал един усукан вал на "филийки". Усукването се характеризира с ъгъла на усукване Y. Този ъгъл е пропорционален на въртящия момент на усукването М и не зависи от дължината на вала. Това е точно така както е при пружината. Ъгъл Y е аналогичен на разстоянието между навивките на разтегнатата пружина. Дъгите на усукване da също са еднакви и са пропорционални на въртящия усукващ момент. Въртящият момент М при вала е аналогичен на силата на опън при пружината. При един и същи М имаме едно и също da без значение колко е дълъг вала. В изведената формула Y = rф/x се вижда, че при М=const и Y=const (M и Y са пропорционални), с увеличаване на дължината х на вала, се увеличава ъгълът "фи". Това е като при пружината - колкото е по-дълга, толкова повече се разтегля при един и същи товар. А ако дължината х на вала е постоянна, а увеличаваме дебелината на вала (радиуса r), това ще доведе до намаляване на ъгъл "фи" при един и същи въртящ момент. Нека да запишем и закона на Хук при усукване
Т(ус) = GY
Ъгълът на усукване Y вече го споменахме по-горе, Т(ус) е напрежение на усукване или срязване и се мери в Паскали [Ра], а G е модул на еластично усукване (срязване).
Сега да видим как изведох формулата за максималния допустим въртящ момент според здравината на материала на вала. На чертежа може да смятаме, че имаме кух вал или направо тънкостенна тръба. Отрязваме мислено най-дясната "филийка" на тръбата и я правим на плоскост с размери dx, dr и 2пr. Приемаме, че площта ds контактува със съседната "филийка" на тръбата. Ако дърпаме нашата плоскост със сила F, ще имаме нещо като триене със съседната площ ds. Силата F може да я изразя чрез напрежението Т на срязване (триене) -
F = T.ds = T.2пr.dr
Тази сила, умножена по радиуса дава въртящия момент dM, действащ въртящо на нашата "тръбна филийка" (пръстен). dM = F.r = T.2пr.r.dr
Сега трябва да сумираме (интегрираме) всички концентрични пръстени с намаляващ радиус до нула ако имаме плътен (не кух) вал.
Сумата(dM) = M = 2пТ.Сумата(r.r.dr)
М = 2пТ.r.r.r/3 за r от нула до r за плътен (не кух) вал.
Това е прост интеграл и всеки студент от първи курс може и сам да си го сметне. Като от радиус преминем към диаметри (2r = d), за крайния резултат получаваме
М(въртящ) = пТ(D.D.D - d.d.d ) /12
Тук п= 3.14, а Т е Т(ус) - напрежението на усукване в Паскали. Ако валът е кух ще има и вътрешен диаметър d, освен външен диаметър D. При моята формула в знаменател получих 12, докато в учебник по съпромат числото е 16. Може да са направили някакви обобщения и затова да е така. Горната формула дава връзката между въртящия момент М(въртящ), напрежението в материала Т(ус) и геометричните размери на вала. Когато в тази формула сложим максимално допустимото напрежение на усукване (срязване), тогава ще получим и максимално допустимия въртящ момент за дадените размери. Като знаем Т(ус)max и за какъв въртящ момент проектираме дадената машина, лесно можем да сметнем с каква дебелина трябва да ни е валът. На практика избираме диаметър за вала, по-голям от изчисления за да се подсигурим от авария при евентуално претоварване.