Ей хора,
елате си в 21 век!!!
Ако Тесла живееше сега, нямаше да има никакви искрища и чудесии...
Той тогава човека е нямал нищо и от нищото е направил нещо а сега, сега просто можеше да направи безброй неща или просто да не направи нищо, защото повечето от патентите му щаха да са открити от негови предшественици.
Освен това той, навремето е имал един Едисон с който вместо да работят съвместно, оня е тръгнал да си го мери с него, както е и днес разбира се!!!
На Тесла са му трябвали едни лампи /ел. крушки/ от арсенала на Едисон и оня разбира се го е отрязал, та е трябвало да измисля негови си...
Това го споменавам по повод на някои хора от форума, дето споменават че са направили нещо, ти ги питаш какво може да се очаква от устройството, а те - сакън, патент, направи си устройство и го тествай... То аз ако трябваше да тествам всяко нещо което ми представлява интерес, подобре да приватизирам "AREA-51" в Невада!!!
Първо 555 е стабилен RC генератор, зарежда кондензатора до 2/3 от захранващото напрежение, после го разрежда до 1/3, така честотата независи от захранващото напрежение, което е основния фактор на нестабилност. Остава само топлинната нестабилност на елементите, което е значително по-малък фактор. Освен това схемата има тример за донастройка - демек за уцелване на резонансната честота!!!
Проблем който съм имал при работа с 555 и "искрища", тоест автомобилни свещи е факта, че при моя случай в момента на запалване на искрата таймера се рестартираше и простите методи на филтрация на захранването непомогнаха...
Аз директно преминах на схема с PIC10F200 SMD, което реши проблема, намали консумацията, броя на елементите и заеманото място. Тук имаме вграден стабилен RC генератор на 4 МHZ калиброван от завода с точност до 1%! Така лесно може да се постигат и изчисляват сложни форми на сигнала!!!
PIC12F683 има всичко, 8MHZ RC генератор /1% точност/, поддържа външен кварц от 32KHZ до 20MHZ, тук точността и стабилността е много голяма. Голям е колкото корпуса на 555!!!
Въобще процесорите позволяват на устройствата да бъдат "умни", а вместо това аз слушам за някакви отживелици от едно време!!! все едно вместо да си свърша работа с електромотор - да ползвам парна машина!!!
Така, стигнахме до транзистора:
BUZ11 e 50V 30A 0.04 OM, който при 30V захранващо напрежение вероятно ще "пукне" веднага или почти веднага!!!
Диода 1N4007 практически него пази...
KD503 - непроменя нещата с неговите 80V CE!!!
Вариант е BU931Z, който е направен специално за управление на индуктивни товари и по-точно за запалителните системи на автомобилите. Има вграден ценер за 350V, който да ограничава пика на напрежението в товарната намотка на запалителната бобона, посредством което пази от пробив високоволтовата й намотка!!! Мощен дарлингтон е, с което намалява управляващия ток!!!
Все-пак и той изгаря при претоварване!!!
Този е сравнително евтин елемент има и по-добри но в момента не се сещам по памет!!!
IRFP460 - Може да стане, но трябва да му се осигури външна защита!!!
Транзистори от ТХО, като BU508A издържат до 1500V, но трябва да им се осигури външна защита!!!
От тази група има много високоволтови транзистори, но те всичките имат малко усилване за сметка на голямото пробивно напрежение и е нужна външна защита от пробив!!!
Аз лично най-харесвам една схема, кадето кондензатор се зарежда до 300V и после посредством тиристор се разрежда през товарната намотка на бобината, защото може да се реализира директно от мрежата без каквито и са било други трансформатори!!! Мисля, че може да се ползва едната полувълна за зареждане на кондензатора, а повреме на другата да се стартира изпразването!!! На подобен принцип аз карам JET и стигам 15000 оборота в минута, като имам по 2 импулса на оборот. Кондензатора е 3.3uF и го зареждам около300V.
Хубавото на тази схема е факта, че можем да поддържаме високоволтовия импулс с определени параметри, защото бобината работи като автотрансформатор, а не на базата на самоиндукция кадето е неясно до колко ще се покачи изходното напрежение.
В конкретния случай сметката е 90x300V=27KV, а енергията на импулса е (CU^2)/2 -> 3.3e-6x300x300/2= 0.1485[J]. Изходната мощност е равна на енергията на импулсите за 1 секунда, тоест ако импулсите са 50, P=50x0.1485 -> P= 7.425W. При 81% КПД, изходната мощност ще е около 6W.
На подобен принцип работи и запалването при домашните котли за природен газ. Там трансформаторчето е доста по-малко от автомобилна бобина. Високоволтовата страна е разделена електрически от нисковолтовата и е добре изолирана. На платката има и съответна ел. схема, която създава генерациите и понеже е с тиристор обикновено на повредените платки тя е здрава, освен това взима захранване предимно през релета. Най-често се захранва с мрежово напрежение, така че сдобивайки се с повредена платка, обикновено се сдобиваме с работеща запалителна система!!!
По отношение на автомобилните бобини, мога да кажа, че показаните по снимките са от старите дето работеха с "чукче и наковалня"!!!
При съвременните бобини, товарната намотка е с много по-ниско съпротивление! Коефициента на трансформация, който съм измерил е около 90, което е ориентировъчна стойност за изчисления. Има бобини с 3 извода, при които връзката е като автотрансформатор, тоест стандартното и бобини с 4 извода, при които първичната и вторичната намотки са независими, като на високоволтовата бобина са изведени и двата края!!!
Нормално при 12V, ключовия елемент трябва да се отпуши за време от 3 до 5 ms, за което тока през първичната намотка достига номиналната си стойност. При по-високи захранващи напрежения или изходни мощности, съоветно това време трябва да се преизчисли.
От 15KV нагоре започват леки пробиви във високоволтовата намотка, които не са опасни за нея, но от 20-30KV вече започват да стават опасни!!! Който иска да работи при по-високи напрежения нека знае че ще е за кратко - колкото по-високи, толкова по за кратко време!!!